2x^2+(14/5)x-228=0

Simple and best practice solution for 2x^2+(14/5)x-228=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+(14/5)x-228=0 equation:



2x^2+(14/5)x-228=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2x^2+(+14/5)x-228=0
We multiply parentheses
2x^2+14x^2-228=0
We add all the numbers together, and all the variables
16x^2-228=0
a = 16; b = 0; c = -228;
Δ = b2-4ac
Δ = 02-4·16·(-228)
Δ = 14592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14592}=\sqrt{256*57}=\sqrt{256}*\sqrt{57}=16\sqrt{57}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{57}}{2*16}=\frac{0-16\sqrt{57}}{32} =-\frac{16\sqrt{57}}{32} =-\frac{\sqrt{57}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{57}}{2*16}=\frac{0+16\sqrt{57}}{32} =\frac{16\sqrt{57}}{32} =\frac{\sqrt{57}}{2} $

See similar equations:

| (10x-10)+56=55=180 | | 13=(w-14)÷2 | | 7a-0.5+7=5a+2.3 | | x2-10=x2-98 | | 4/5+7/27=s/45 | | -0.0035x+35=59 | | 15(x+3)=2x(12) | | -2x+98=88 | | 1.2b+2.6=10.2-1.3b | | 106-10x=46 | | 5n^2+11n+-1818=0 | | 0.5x-0.002x^2=0 | | 3x+75=87 | | -3x72=63 | | 25=-210-65x | | 3/7x=-2 | | x-2(5x+2)=5-9x | | 3/7x-9=-4 | | y-28=29 | | 4w=-8+2w | | 4/9x+13=8 | | 6x^2+31x=0 | | 4(3x-6)-2=-50 | | x2+8x−17=0x2+8x-17=0 | | y-9+y=235 | | x^2+10x=49 | | -6(5x+19=156 | | N+8=4x6 | | 19/44x=x-850 | | 20=14+3m+24 | | (5r+3)(r+4)=0 | | 0-2x=2 |

Equations solver categories